Vector Algebra

Vector changes Geometry to Algebra

1. No complexity of Analytical Geometry
2. Remove the astute dotted (helping) line in Geometry
3. No need diagram: Use only 2 vector properties:
Head- to-Tail:
\vec{AC}=\vec{AB}+\vec {BC}
Closed Loop:
\vec{DE}+\vec{EF}+\vec{FD}=0
4. Enable Computer automated proof of Geometry via Algebra.

Example: 任意四边形 Quadrilateral ABCD with M,N midpoints of AB, CD, resp.
Prove: MN=1/2(BC+AD)
Proof: (by vector):

Consider MBCN:
MN=MB+ BC+ CN..(1)

Consider MADN:
MN=MA+ AD+ DN..(2)

(1) +(2):
2MN=(MB +MA) +
(BC +AD) +(CN +DN)

but (MB +MA) =0,
(CN +DN) =0 [same magnitude but different direction cancelled out ]

=> MN=1/2 (BC +AD)

Special cases:
1. A = B (=M)
=> triangle ACD
AN = 1/2 (AC +AD)
2. BC // AD
=> Trapezium ABCD
MN=1/2 (BC +AD)
=> MN // BC // AD

Advertisements

One thought on “Vector Algebra

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s