# Group Theorems: Lagrange, Sylow, Cauchy

1. Lagrange Theorem:
Order of subgroup H divides order of Group G

Converse false:
having h | g does not imply there exists a subgroup H of order h.
Example: Z3 = {0,1,2} is not subgroup of Z6
although o(Z3)= 3 which divides o(Z6)= 6

However,
if h = p (prime number),
=>
2. Cauchy Theorem: if p | g
then G contains an element x (so a subgroup) of order p.
ie. $x^{p} = e$ ∀x∈ G

3. Sylow Theorem :
for p prime,
if p^n | g
=> G has a subgroup H of order p^n: $h= p^{n}$

Conclusion: h | g
Lagrange (h) => Sylow (h=p^n) => Cauchy (h= p, n=1)

Trick to Remember:

g = kh (god =kind holy)
=> h | g
g : order of group G
h : order of subgroup H of G
k : index

Note:
Prime order Group is cyclic
(Z/pZ, +) order p is cyclic & commutative.

Order 4: Z4 not isomorphic to Z2xZ2

Order 6: only Z6 isomorphic Z2xZ3.
Z6 non-commutative

S3 = {1 2 3} ≈ D3 Not Abelian
(1 2)(1 3) = (1 3 2)

(1 3)(1 2) =(1 2 3)

Lagrange: |G|=6
=> order of subgroups in G = 1,2,3,6
6= 2×3
Cauchy : 2|6, 3|6 (2,3 prime)
=> order of elements in G
= 2, 3

1. tomcircle