Math for AI : Gradient Descent

Simplest explanation by Cheh Wu:

(4 Parts Video : auto-play after each part)

The Math Theory behind Gradient Descent: “Multi-Variable Calculus” invented by Augustin-Louis Cauchy (19 CE, France)

1. Revision: Dot Product of Vectors

https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-dot-product-and-vector-length

2. Directional Derivative

3. Gradient Descent (opposite = Ascent)

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/gradient-and-directional-derivatives/v/why-the-gradient-is-the-direction-of-steepest-ascent

Deeplearning with Gradient Descent:

Advertisements

One thought on “Math for AI : Gradient Descent

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s