**The Big Picture of Linear Algebra 线性代数 (***MIT Open-Courseware by the famous Prof Gilbert Strang)*

**A.X = B**

**A(m, n) ** is a matrix of **m** rows, **n** columns

4 sub-Vector Spaces:

Column Space , dim = **r = rank** (A)

Row Space , dim = **r = rank** (A)

Nullspace , dim = **n – r**

Left Nullspace , dim = **m – r**

Abstract Vector Spaces 向量空间

Any object satisfying these 8 axioms belong to the algebraic structure of Vector Space: eg. Vectors, Polynomials, Functions, …

**Note**: “Vector Space” + “Linear Map” = “Category”

**Eigenvalues & Eigenvectors** (*valeurs propres et vecteurs propres*) 特征值/特征向量

[ Note: “*Eigen*-” is German for *Characteristic* 特征.]

**Important Trick**: (see Monkeys & Coconuts Problem)

If a transformation A is linear, and the “**before**” state and “**after**” state of the “vector” **v** remain the same (keep the status-quo) , then : **Eigenvalue **

Try to compute:

is more difficult than this diagonalized equivalent matrix:

**Note**: This is the secret of the Google computation of diagonalized matrix of billion columns & billion rows, where all the **b**jk are the “PageRanks” (web links coming into a particular webpage and links going out from that webpage).

**The Essence of Determinant (*)**: (行列式)

(*) Determinant was invented by the ancient Chinese Algebraists 李冶 / 朱世杰 /秦九韶 in 13th century (金 / 南宋 / 元) in《天元术》.The Japanese “和算” mathematician 关孝和 spread it further to Europe before the German mathematician Leibniz named it the “Determinant” in 18th century. The world, however, had to wait till the 19th century to discover the theory of **Matrix** 矩阵 by JJ Sylvester (Statistical Math private Tutor of Florence Nightingale, the world’s first nurse) closely linked to the application of **Determinant**.

[**NOTE**] 金庸 武侠小说 《神雕侠女》里 元朝初年的 黄蓉 破解 大理国王妃 瑛姑 苦思不解的 “行列式”, 大概是求 eigenvalues & eigenvectors ? 🙂