The Evolution of Software

https://medium.com/@cscalfani/so-you-want-to-be-a-functional-programmer-part-1-1f15e387e536

Advertisements

Alejandro Serrano: Category Theory Through Functional Programming

(Part 1/3) – λC 2017

What is Category ?

Objects

Morphism (Arrows )

Rule1: Associative

Rule 2: Identity

A <– C –> B

Product of Categories : A x B

Unique

Sum of Categories: A + B

Unique

(Either a b)

Co-Product

Reverse all arrows.

Unique

Functor F: C-> D

Mapping of all objects (A, B) in categories C,D

Mapping of arrows f
f : A -> B
Ff : FA -> FB (preservation)
F Id = Id
F (f。g) = Ff。Fg

Example:

Constant C -> F
FC = k
Ff = Id

Arrow Functor F: C -> D

For any object A in C,

F A = D -> A
(Functional Type is also Type)

Functors compose !

Category of categories:

Objects: categories

Arrows : Functors

Haskell Category (Hask) is always Endo-Functor, ie Category Hask to itself.

Mapping of arrows.

Mapping of Objects = predefined

(Part 2/3) – λC 2017

(part 3/3) – λC 2017

Higher Order Function

[Source] https://www.quora.com/What-are-the-mathematical-explanations-for-higher-order-functions-Functional-programming/answer/Bartosz-Milewski?share=d265e0ac&srid=ZyHj

As Tikhon Jelvis explained in his response, functions map sets to sets, and functions themselves form sets. This is the essence of the untyped lambda calculus. Unfortunately, untyped lambda calculus suffers from the Kleene–Rosser paradox (later simplified to Curry’s paradox).

This paradox can be removed by introducing types, as in the typed lambda calculus. Simple types are equivalent to sets, but  in order to pass a function as an argument to another function (or return one), we have to give this function a type. To really understand what a function type is, you need to look into category theory.

The categorical model for the typed lambda calculus is a category in which objects are types and morphism are functions. So if you want to have higher order functions, you have to be able to represent morphisms as objects — in other words, create a type for functions. This is possible only if the category is cartesian closed. In such a category you can define product types and exponential types. The latter correspond to function types.

So that’s a mathematical explanation for higher order.