函数概念并不难,理解“函”字是关键——函数概念如何理解】

【函数概念并不难,理解“函”字是关键——函数概念如何理解】
https://m.toutiaocdn.com/group/6714162037842248205/?app=news_article_lite&timestamp=1563301386&req_id=201907170223060101520450386849493&group_id=6714162037842248205&tt_from=android_share&utm_medium=toutiao_android&utm_campaign=client_share

清. 李善兰 翻译 Function 为函数。函,信也。只能有一个收信人,所以 只有一个 f(x) 值。

The unique 1 single output of a function becomes very important for subsequent development in Math & IT:
functions are composable, associative, identify function,etc (distributive,… ) => it can be treated like vector => structure of a Vector Space “Vect”

Extended to..

“Vect” is a bigger structure “Category” in which “function of functions” is a
Functor” (函子)F:F(f)

Example : F(f) = fmap (in Haskell)

fmap (+1) {2,7,6,3}

=> {3,8,7,4}

here F = fmap, f = +1

The Math branch in the study of functions is called “functional” 泛函。

IT : Functional Programming in Lisp, Haskell, Scala, ensure safety of guaranteed output by math function property. Any unexpected exception (side effects: IO, errors) is handled by a special function called “Monad” (endo-Functor).

(想看更多合你口味的内容,马上下载 今日头条)
http://app.toutiao.com/news_article/?utm_source=link

A Fistful of Monads

Kotlin Monad (and Functor, Applicative)

1. Functor “map” (Kotlin) (fmap or <$> in Haskell)

https://hackernoon.com/kotlin-functors-applicatives-and-monads-in-pictures-part-3-3-832d58d92445

2. Monadsflatmap” (>>= in Haskell)

Haskell Monad:

http://learnyouahaskell.com/a-fistful-of-monads

Do not fear Monoid / Monoidal Category / Monad:

Monad in Haskell

F# Monad:

View at Medium.com

(分享自知乎网)

https://zhuanlan.zhihu.com/p/29542641

代 数拓扑 Algebraic Topology (Part 1/3)

Excellent Advanced Math Lecture Series (Part 1 to 3) by 齊震宇老師

(2012.09.10) Part I:

History: 1900 H. Poincaré invented Topology from Euler Characteristic (V -E + R = 2)

Motivation of Algebraic Topology : Find Invariants [1]of various topological spaces (in higher dimension). 求拓扑空间的“不变量” eg.

  • Vector Space (to + – , × ÷ by multiplier Field scalars);
  • Ring (to + x) in co-homology
  • etc.

then apply algebra (Linear Algebra, Matrices) with computer to compute these invariants  (homology, co-homology, etc).

A topological space can be formed by a “Big Data” Point Set, e.g. genes, tumors, drugs, images, graphics, etc. By finding (co)- / homology – hence the intuitive Chinese term (上) /同调 [2] – is to find “holes” in the Big Data in the 10,000 (e.g.) dimensional space the hidden information (co-relationship, patterns, etc).
Note: [1] Analogy of an”Invariant” in Population: eg. “Age” is an invariant can be added in the “Population Space” as the average age of the citizens.

Side Reading (Very Clear) : Invariant and the Fundamental Group Primer

Note [2]: Homology 同调 = same “tune”.

南朝 刘宋 谢灵运山水诗:
“谁谓古今殊,异代可同调
同调 = Homology
(希腊 homo = 同, -logy = 知识 / 调)

– “Reading an ancient text  allows us to think “in tune” (or resonant) with the ancient author.”

[温习] Category Theory Foundation – 3 important concepts:

  • Categories
  • Functors
  • Natural Transformation

[Skip if you are familiar with Category Theory Basics: Video 16:30 mins to 66:00 mins.]


[主题] Singular Homology Groups 奇异同调群  (See excellent writeup in Wikipedia) (Video 66:20 mins to end)

  1. Singular Simplices 奇异 单纯
  2. Singular Chain Groups 奇异 链 群
  3. Boundary Operation 边界
  4. Singular Chain Complex 奇异 单纯复形

Part 1/3 Video (Whole) :